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ABSTRACT

Parsimonious covering theory is a formal
model of diagnostic reasoning.
Diagnostic knowledge is represented in
the theory as a network of causal
associations, and problem-solving is
represented in algorithms that support a
hypothesize-and-test inference
process. This paper summarizes in
informal terms the basic ideas in
parsimonious covering theory.

INTRODUCTION

This chapter summarizes recent work
on a formal model of diagnostic
reasoning referred to as parsimonious
covering theory, and discusses its
relevance to medical diagnosis and
expert systems. Parsimonious covering
theory represents diagnostic knowledge
as a network of causal associations, and
models diagnostic reasoning as a
hypothesize-and-test procedure whose
goal is to account for observed symptoms
with a plausible explanatory
hypothesis. This theory, which is still
evolving, captures several important
features of human diagnostic inference,
directly addresses the issues of
diagnostic context and of multiple
simultaneous causative disorders, and
provides a conceptual framework within
which to view recent work on diagnostic
problem-solving in general.

DIAGNOSTIC REASONING AND COMPUTATIONAL
MODELS OF DIAGNOSTIC INFERENCE

Diagnostic reasoning in medicine
has received a great deal of attention
over the last few years by cognitive
psychologists, artificial intelligence
(AI) researchers interested in modeling
the underlying thought processes, and
educators interested in iFpgoy4nf te
~&a4~iVi of diagnosticians. s, ,17,

2 I This section first briefly
reviews past empirical studies of the
diagnostic reasoning process, and then
discusses computational models of this

process. The goals are to provide the
reader with sufficient background so
that the relationship of parsimonious
covering theory to diagnostic reasoning
can be appreciated, and to relate this
model to previous work in AI.

Empirical Studies of Diagnostic
Reasoning

While a variety of experimental
designs have been used in empirical
studies of diagnostic reasoning, perhaps
the most common has been the use of
simulated diagnostic problems. A
problem-solving session is typically
recorded or videotaped, and is followed
by "debriefing" of the diagnostician
("Why did you ask this? What were you
thinking of here? . . ."). Based on
these studies, diagnostic reasoning is
generally accepted to be a sequential
hypothesize-and-test (hypothetico-
deductive) process during which the
diagnostician conceptually constructs a
"model" of the underlying causative
disorders. This model, or hypothesis,
is based primarily on the manifestations
that are known to be present (the
patient's symptoms). It postulates the
presence of one or more disorders that
could explain the given
manifestations. Each cycle of the
inference process can be viewed as
consisting of three phases: disorder
evocation, hypothesis evaluation or
construction, and question generation.
In reality, these three phases overlap
extensively.

Disorder evocation is the retrieval
from long-term memory of causative
disorders as the diagnostician detects a
new manifestation in the information
available about a problem. This evoking
of potential causes for the
manifestations begins very early in the
diagnostic process and draws on the
diagnostician's memory of causal
associations between disorders and their
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manifestations. Ideally, the
diagnostician's knowledge base or long-
term memory includes the set of all
possible causative disorders for each
manifestation, and the set of all
possible manifestations for each
disorder.46 Usually a single
manifestation (rather than combinations
of manifestations) is responsible for
evoking new disorders for inj rporation
into the evolving hypothesis.

The second phase of the
hypothesize-and-test cycle, hypothesis
evaluation or construction, involves the
incorporation of possible causes of the
new manifestation into the hypothesis.
This may require attributing the
manifestation to some disorder already
assumed to be present, or adding new
disorders evoked by the manifestation to
the hypothesis. The diagnostician's
hypothesis may at times be relatively
complex. Not only may it contain a
great deal of uncertainty about which of
several diagnoses account for a certain
manifestation, but it might also presume
the simultaneous presence of multiple
disorders. The empirical evidence
suggests that the hypothesis can best be
viewed as a resolution of two
conflicting goals:

Coverage goal: The goal of explaining
all of the manifestations that are
present.

Parsimony goal: The goal of minimizing
the complexity of the explanation.

The second goal is sometimes referred to
as "Occam's razor." The parsimony goal
can be viewed as an attempt to focus the
reasoning process and therefore restrict
searching, as a reflection of human
memory limitations, or as a "common
sense" heuristic that is correct most of
the time.

It is important to appreciate the
sequential nature of diagnostic
reasoning. As the diagnositican
gradually learns information about a
problem, his or her hypothesis changes
to reflect this new information. For
example, if a patient complains of
sudden onset of chest pain, a
physician's initial hypothesis might be
something like:

HYPOTHESIS Hi: Heart attack, or
pulmonary embolus, or . . .

As further details become available,
some of the initially possible disorders
might be eliminated. If it was then
learned that the patient also had a

chronic cough, the hypothesis might
change to

HYPOTHESIS H2: Heart attack, or
pulmonary embolus, or .

and
"bronchitis, or asthma, or . .

reflecting the physician's belief that
at least two diseases must be present to
account for this patient's symptoms.
Note that at this point, the hypothesis
contains both uncertainty (indicated by
or) and the presumption that multiple
simultaneous disorders are present
(indicated by and).

Another aspect of hypothesis
evaluation is the ranking of the
likelihood of competing disorders. The
term "competing disorders" refers to
hypothesized alternatives which can
account for the same or similar
manifestations, such as heart attack and
pulmonary embolus in Hypothesis Hl.
Perhaps surprisingly, human
diagnosticians appear to use only a
three-point weighting scheme to rank
competing disorders: a particular
finding may be "positive,
noncontributory or negative w h respect
to a particular hypothesis." At the
end of a problem-solving session,
diagnositicans are thus able to rank
competing disorders only in a very
coarse fashion (e.g., disorder d is
definitely present, d is very likely to
be present, d may be present, d is
possible but improbable). Most of this
ranking can be accounted for by either
of two rules: (a) weighting based on
counting the number of positive
findings, or (b) weighting based on
counting the number of positive findings
minus the number 1i expected findings
found to be absent.

The third phase of the hypothesize-
and-test cycle is question generation,
and it represents the "test" phase. The
word "question" here is being used in a
general sense to indicate not only
verbal questions, but also any type of
information-gathering activity.
Investigators studying human diagnostic
problem-solving often divide such
questions into two categories:
protocol-driven and hypothesis-driven.
Protocol-driven questions are those a
diagnostician generally asks as a
routine during a diagnostic session. In
contrast, hypothesis-driven questions
seek information that is specifically
needed to modify the evolving
hypothesis. Investigators who observe
diagnosticians sometimes attribute each
hypothesis-driven question to a specific
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problem-solving strategy: attempting to
confirm a hypothesis, attempting to
eliminate a hypothesis, or attempting to
discriminate between two or more
hypotheses.

Many aspects of the diagnostic
reasoning process are incompletely
understood at the present time. For
example, it is unclear how a
diagnositician reasons about multiple
simultaneous disorders. In such
situations the manifestations must be
attributed to appropriate disorders, and
competing disorders must be ranked in
the context of other disorders assumed
to be present. It is also unclear
exactly how diagnosticians decide to
terminate the diagnostic process because
a "solution" has been reached.

Computational Models of Diagnostic
Problem-Solving

A great variety of approaches has
been taken in representing and
processing knowledge in computational
models 3f8 diagnostic problem-
solving.31,o Table 1 lists three
prominent examples of such methods. In
systems using statistical pattern
classification, the knowledge base
typically consists of tables of
probabilities, and the inference
mechanism involves the calculation of
posterior probabilities of disorders
using formulas such as Bayes' theorem.
Models of this type have clearly
achieved expert-level performance, at
times qTo rforming human diagnost-
icians,l P but are of limited value in
situations where multiple, simultaneous
disorders may occur, and are difficult
to use for many real-world problems
because the necessary probabilities are

Method

Statistical pattern
classification

Rule-based
deduction

Theoretical Basis

Probability Theory

First-order
predicate calculus

Association-based ?
abduction

----------------------------------------

Table 1: Methods for Diagnostic
Inference.
----------------------------------------

not available. It is important to what
follows to note that models using
statistical pattern classification have

a strong theoretical foundation in
probability theory.

Computational models of diagnostic
problem-solving using rule-based
deduction typically have a knowledge
base consisting of conditional rules and
an inference mechl5ism based on making
logical deductions (e.g., modus ponens
or proof by refutation). As with
statistical pattern classification
models, systems of this type have
clearly been demonstrated to exhibit an
expert llge J4of performance in empirical
testing, ' 4 but reformulating
naturally-occurring knowledge as rules
has proven to be extremely difficult in
general diagnostic domains. Rule-based,
deductive systems also have a strong
theoretical foundation, in this case in
first-order predicate calculus.

The third approach to building
diagnostic expert systems listed in
Table 1 is association-based
abduction. In contrast to deductive
rule-based systems, whose inferences
might in their simplest form be
characterized by the syllogism

Given fact "A" and rule "A ,B", infer
"B",

systems of this type inherently involve
abductive inference of the form

Given fact "B" and association "A - B",
infer "plausible A".

Although the "- " in the deductive
syllogism refers to logical implication,
in the abductive syllogism as used in
diagnostic problem-solving it refers to
a causal association between A and B:
"disorder A is capable of causing
manifestation B, and manifestation B is
known to be present, so perhaps disorder
A is causing it."

The term "abduction" refers to any
reasoning in which the goal is to derive
the best explanatiBns) f95 a given set
of observed facts. , 3o, 5 Tasks that
are abductive in nature typically
involve probabilistic, context-sensitive
disambiguation of problem features using
associative knowledge. They involve the
construction of a solution, as well as
selection from alternative solutions.
Diagnosis is Just one example of an
abductive task. Many aspects of natural
language understanding and high-level
scene interpreteion can also be viewed
as abductive. s

Abductive lemsIV.$1, ,f,29,dg28*6,probleM-solving PJS
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43 not only aim for a high level of
performance, but they also are often
explicit attempts to model the
underlying reasoning of the
diagnostician. Information in the
knowledge base, typically causal
associations, is generally represented
in a descriptive or "object-oriented"
fashion, and a sequential hypothesize-
and-test inference process is used. The
key point here for what follows is that
association-based abductive models of
diagnostic inference, in marked contrast
to models using statistical pattern
classification and rule-based deduction,
do not have a readily identifiable,
well-developed theoretical foundation.
It is in large part due to this absence
of a theoretical basis that AI research
on abductive expert systems i% sometimes
dismissed as "ad hoc". The
parsimonious covering theory described
in this paper represents an attempt to
fill this gap.

PARSIMONIOUS COVERING THEORY

Our approach to providing a
theoretical model of human diagnostic
reasoning, and of association-based
abductive computational systems, has
been to develop a formal abductive logic
referre $ as parsiminious covering
theory. This non-deductive
theoretical model has been used as the
basis of31 number of implemented expert
systems, and has proven quite
powerful: it supports a descriptive
knowledge re iesentation and answer
justification, and it handles many of
the difficulties that arise in the
context of multiple simultaneous
disorders.

This section describes the method
used to represent diagnostic problem-
solving knowledge in parsimonious
covering theory and the formulation of
problems. Algorithmic models of the
reasoning processes used during
diagnostic problem-solving are then
outlined for certain classes of
diagnostic problems. Finally, several
issues involved in extending the basic
theory are discussed. While it would be
possible to present this material in a
mathematically rigorous fashion, the
emphasis in the following is on
explaining the intuitions behind
parsimonious covering theory. Readers
interested in the mathematical details
are referred to the literature cited
above.

Knowledge Representation and Problem
Formulation

In parsimonious covering theory,
diagnostic knowledge is represented as
an associative network of causal
relationships (see Figure la).
Disorders, indicated by nodes in set D,
are causally-related to intermediate
pathological states (set S), and
ultimately to measurable manifestations
(set M). For example, in medicine,
"heart attack" would be a disorder,
"shock" a pathological state, and
"confused" a manifestation. A heart
attack may cause shock, which in turn
may cause someone to be confused. The
state of being confused is considered to
be a directly-observable abnormality,
making it a manifestation, while shock
and heart attack are not considered to
be directly observable (their presence
must be inferred).

The associative knowledge used in
medical diagnostic problem-solving is
very large and complex. One approach to
formalizing the structure and use of
this knowledge is to examine the most
general case possible. While this is
obviously the ultimate goal, as a
starting point in explaining
parsimonious covering it introduces a
large amount of complexity and detail
that obscures the central ideas of the
theory. Thus, we will initially
consider only the simplest version of
parsimonious covering theory and discuss

(a)

D

S

M

(b)

D

M

----------------------------------------

Figure 1: Causal associations in
diagnostic problems.
----------------------------------------
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its implications. Once this basic
formulation is understood, the basic
assumptions will be reexamined to
explain why more general formulations
are useful.

In the simplest version of
parsimonious covering theory the
underlying knowledge for a diagnostic
problem is organized as pictured in
Figure 2b. There are two discrete
finite sets which define the scope of
diagnostic problems: D, representing
all possible disorders di that can
occur, and M, representing all possible
manifestations mj that may occur when
one or more disorders are present. In
medicine D represents all known diseases
(or some relevant subset of all
diseases), and M represents all possible
symptoms, examination findings, and
abnormal laboratory results that can be
caused by diseases in D. We will assume
that D and M have no elements in common,
and that the presence of any di is not
directly measurable.

To capture the intuitive notion of
causation, we assume knowledge of a
relation C involving individual
disorders and manifestations. Stating
that "<di,md> is in C" represents the
fact that dUi can cause mi. Note that
having <di,m > in C does Aot imply that
mA always occurs when di is present, but
otily that m may occur. For example, a
patient witZ a heart attack may have
chest pain, numbness in the left arm,
loss of consciousness, or any of several
other symptoms, but none of these
symptoms is necessarily present.

Given D, M, and C, the following
sets can be defined:
man(di) = {miI<di,m> is in C}

for each disorder di in D, and
causes(m ) = {d j<di,m > is in C}

for eagh manifestation mi in M.

These sets are depicted in Fig. 2b, and
represent all possible manifestations
caused by di, and all possible disorders
that cause mi, respectively. These
concepts are iYtuitively familiar to the
human diagnositician. For example,
medical textbooks frequently have
descriptions of diseases which include,
among other facts, the set man(di) for
each disease di. Physicians often refer
to the "differential diagnosis" of a
symptom, which corresponds to the set
causes(m ). Clearly, if man(di) is
known fgr every disorder di, or if
causes(m.) is known for every
manifestation mi, then the causal
relation C is com;letely determined. We
will use man(DI) = kJ man(di) and

di s Di

causes(MJ) = U M causes(m3) to

indicate all possible manifestations of
a set of disorders DT and all possible
causes of any manifestation in Mi.
respectively. Finally4 there is a
distinguished subset M of M which
represents manifestations which are
known to be present (see Fig. 2b).
Whereas D, M, and C are general
knowledge about a class of diagnostic
problems, M+ represents the
manifestations occuring in a specific
case.

Using this terminology, a
(bipartite) diagnostic problem P in
parsimonious covering theory is defined
by specifying D, M, C and M+. We will
assume in what follows that diagnostic
problems are well-formed in the sense
that man(di) and causes(mj) are always
non-empty sets.

Having characterized a diagnostic
problem in these terms, we now turn to
defining the solution to a diagnostic
problem by first introducing the concept
of explanation.

An explanation E+ for M+ is a set of
disorders where

(i) M+ is a subset of man(E+), or E+
covers M+; and

(ii) E+ is parsimonious.

An explanation represents a plausible
diagnostic hypothesis. The definition
of an explanation captures many features
of what one intuitively means by
"explaining a set of manifestations,"
and is central to parsimonious covering
theory. Part (i) specifies the
constraint that an explanation E+ must
be able to cause the manifestations
known to be present in the case being
diagnosed. In other words, an
explanation E+ must be a cover: a set
of disorders that can account for or
"cover" M+. If one assumes that the
manifestations in M do not occur
spontaneously, but only when caused by
disorders, +then one can prove that
whenever M occurs it must be the case
that or% of its covers is also
present.

Part (ii) of the definition
specifies that E+ must also be
"parsimonious," reflecting an intuitive
principle often referred to as Occam's
Razor: the simplest explanation is the
preferable one. Thus, the real meta-
deductive issue raised by the definition
of an explanation is how one should go
about formalizing the notion of
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parsimony or simplicity.
examples of definitions
that have been proposed
grounds for various
applications in the past:

i+-a)Single
E 1=1;

Here are some
of parsimony
on intuitive

diagnostic

disorder assumption:.

(ii-b)Minimal cardinality:
for any cover D+ of M+;

|E+| < |D+|

(ii-c)Irredundancy*: no proper subset
of E+ covers M+; and

(ii-d)Relevancy:
causes(M+).

E+ is a subset of

Each of these parsimony criteria can be
viewed as a generalization of those
listed before it.

Assuming that only a single
disorder can occur at one time (ii-a)
may be aj3 p ropriate in some applic-
ations, 33s' but is obviously too
restrictive for general diagnostic
problem-solving. Minimal cardinality
(ii-b) says that only the smallest sets
of disorders covering M+ should be
considered to be plausible hypotheses.
Minimal cardinality covers have been
used in a number of computational models
of real-world diagnostic reasoning.
However, minimal cardinality covers are
currently viewed as too restrictive.
For example, suppose that either a very
rare disorder d, alone, or a combination
of two very common disorders d2 and d3,
could cover all present
manifestations. If minimality is chosen
as the parsimony criterion, then {d1}
would be chosen as a viable hypothesis
while {d2,d I would not, even though
{d2,d11 might be considered to be more
plausible by a human diagnostician.
Thus, in many diagnostic applications,
selection of plausible hypotheses based
on minimal cardinality might miss the
most probable hypothesis.

On the other hand, relevancy (ii-d)
requires only that any disorder in an
explanation be causally related to some
manifestation in M+. Intuition suggests
that such a parsimony criterion would
result in consideration of a large
number of obviously implausible
diagnostic hypotheses. Therefore,
solely on an intuitive basis, a growing

*Irredundancy is sometimes called
"minimality," but the former term is
used here to avoid any confusion with
the term "minimal cardinality."

number of researchers in this area have
adoptedcfgrgundagy4 as a parsimony
criteria. 2 Using this
criterion, a set of disorders D which
can account for the given manifestations
M+ is to be considered as a plausible
hypothesis if and only if no proper
subset of D+ can cover M+. In the
example in the preceding paragraph,
using irredundancy as a parsimony
criteria results in both sets [di} and
{d2,d3} being considered to be
explanations or plausible hypotheses.

In general diagnostic problem-
solving, there are typically several
sets of disorders that satisfy the
definition of "explanation," and one
often wishes to identify all of these
plausible hypotheses. Thus, the
solution to a diagnostic problem is
defined to be the set of all
explanations for M+, or some most highly
ranked subset of all explanations for
M+.

man (di)

ml m4

ml m3 m4

ml m3

ml m6
m2 m3 m4
m2 m3

m2 m5

m4 m5 m6

m2 m5

Table 2: A 8imple knowledge base.

Example. To illustrate the above
concepts, let D = {dl,d2, . . ., d I, M
= {mn, . . ., m6}, and let man(di) gesas
specified in Table 2. Note that Table 2
implicitly defines the relation C. Let
the observable mainfestations be M+ =

{m1,m4,m5}. Note that no single
disorder can cover (account for) all of
M+, but that some pairs of disorders do
cover M+. For instance, if D1 = {dl,d7 I

then M+ is a subset of man(1l), 80s Dl
covers M+. Since there are no covers
for M+-of smaller cardinality than D1,
it follows that D1 is an explanation for
M+ if minimal cardinality is used as a

parsimony criterion. Careful
examination of Table 2 should convince
the reader that, using minimal
cardinality for parsimony, the solution
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to this diagnostic problem is
{{dpd7 Is {d1,d8l, {dld qIs {d2,d7 ,
{d2,d81 Nd2sd9}, {d3%,d, {d4,d8}},

the set of all explanations for M+.
Alternatively, using irredundant covers
as explanations,
{1{dd7l, {d1d8), [dj,d9}, {d2,d7},
{d2,d8}, (d2,d9}s {d3,d81, {d4,d8},
{d3,d5,d7}, {d3,d5s },(d4sd5pd7{d4,d5,d9I}

is the solution or set of all
irredundant covers.

In summary, the basic formulation
of parsimonious covering theory
presented here represents diagnostic
knowledge as an associative network
where causal relations link disorders to
manifestations. Specifying a diagnostic
problem involves specifying this
associative network and a set of
manifestations M+ which are present in a
specific problem. The goal of problem-
solving is then to construct a set of
explanations or plausible hypotheses for
the given manifestations. Each
exaplanation takes the form of a set of
disorders which "parsimoniously cover"
or account for M+.

Procedural Models of Diagnostic
Reasoning

Given a diagnostic problem
formulated within the framework of
parsimonious covering theory, the next
issue is how to formally model the
abductive, hypothesize-and-test
reasoning process of the human
diagnostician. A number of provably-
correct procedural modeit s6ii under a
variety of assumptions. ./ In the
following, we will presume that
manifestations are discovered one at a
time (rather than all being available
initially) to illustrate the flavor of
parsiminious covering procedures through
an informal example.

The tentative hypothesis at any
point during problem-solving is defined
to be the solution for those
manifestations already known to be
present, assuming, perhaps falsely, that
no additional manifestations will be
subsequently discovered. To construct a
tentative hypothesis like this, three
pieces of information prove useful:

MANIFS: the set of manifestations known
to be present
SCOPE: causes(MANIFS), the set of all
disorders di for which at least one
manifestation is already known to be
present; and
HYPOTHESIS: the tentative solution for
Just those manifestations already in

MANIFS; typically, HYPOTHESIS
represented as a collection
generators, and should be thought of
the current "working hypothesis".

is
of
as

The term "generator" used here
needs further definition. Rather than
representing the solution to a
diagnostic problem as an explicit list
of all possible explanations for M or
MANIFS, it is advantageous to represent
the disorders involved as a collection
of explanation generators. An
explanation generator is a collection of
sets of "competing" disorders that
implicitly represent a set of
explanations in the solution and can be
used to generate them. If A, B and C
are sets of disorders, then "A x B x C,"
read as "one of A and one of B and one
of C", is a generator that represents
all explanations of the form {dA,dB,dCl,
i.e., all explanations where one
disorder comes from A, one from B, and
one from C. Hypotheses Hl and H2 (see
second page) are each generators. To
illustrate further this idea, consider
the example diagnostic problem presented
earlier (Table 2). Assuming minimal
cardinality covers are explanations, two
generators are sufficient to represent
the solution to that problem: {dl,d2l x
{d7,d8,d9} and 0d3,d4} x {d8}- The
second generator here implicitly
represents the two explanations {d3,d8}
and {d4,d8}, while the first generator
represents the other six explanations in
the solution.

There are at least three advantages
to representing the solution to a
diagnostic problem as a set of
generators. First, this is usually a
more compact form of the explanations
present in the solution. Second,
generators are a very convenient
representation for developing algorithms
to process explanations sequentially.
Finally, and perhaps most importantly,
generators are closer to the way the
human diagnostician organizes the
possibilities during problem solving
(e.g., the "differential diagnosis").

Using the three data structures
MANIFS, SCOPE and HYPOTHESIS, a
hypothesize-and-test algorithm based on
parsimonious covering can perform
diagnostic problem solving. The
HYPOTHESIS represents the tentative or
working hypothesis at any point during
problem-solving. The algorithm,
described informally, is:
(1) Get the next manifestation mj and

add it to MANIFS.
(2) Retrieve causes(m3) from the

knowledge base.
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(3) Add causes(m ) to SCOPE.
(4) AdJust HYPO4HESIS to accommodate

(5) Repeat this process until no
further manifestations remain.

Thus, as each manifestation m that
is present is discovered, MANI4S is
updated simply by adding m. to it.
SCOPE is augmented to indlude any
possible causes di of m which are not
already contained in it (derived by
taking the union of causes(m ) and
SCOPE). Finally, HYPOTHESIS is adJusted
to accommodate m based on operations
involving causesCmj) and the sets of
disorders in the existing generators.
These latter operations are done such
that any explanation which can no longer
account for the augmented MANIFS (which
now includes mi) are eliminated, and any
possible new explanations are
automatically constructed.

The key step in this process is
Step 4, the adjustment of the HYPOTHESIS
or working hypothesis. The exact form
of the algebraic operations on the
HYPOTHESIS depends on which parsimony
criteria is being used, but in general
these operations are referred to as
generator "division" and "remainder"
operations. Perhaps the best way to get
a basic understanding of this step is to
follow a simple example. Recall the
abstract knowledge base illustrated in
Table 2, and consider the same
diagnostic problem M+ = {ml,m4,m5} that
was used earlier. Assume that
irredundant covers are explanations.
The order in which information about
manifestations is discovered is
determined by question generation
heuristics. Assuming all manifestations
are found, this order does not affect
the final solution. For now, suppose
that the sequence of events occurring
during problem-solving are ordered as
listed in Table 3.

Initially, MANIFS, SCOPE and
HYPOTHESIS are all empty (0 is the empty
set). When ml is discovered to be
present, ml is added to MANIFS, and the
new SCOPE is the union of the old SCOPE
with causes(ml). Since previously there
were no generators in the HYPOTHESIS, a
new generator is created, in this case
consisting of causes(mj). In the terms
defined earlier, this generator
represents a solution for M+ = {ml}. It
tentatively postulates that there are
four possible explanations for M+, any
one of which consists of a single
disorder. The HYPOTHESIS thus asserts
that "'d, or d2 or d3 or d4 is present."

--------------------------------------

Events in order HYPOTHESIS
of their discovery (generator form)

Initially 0

ml present

m2 and m3 absent
m4 present

m5 present

m6 absent

{di d2 d3 d4}
{dl d2 d3 d4}

{di d2}
and

{d3 d4}x{d5 d8}

{dj d2}x{d7 d8 dg}
and

{d8} x {d3 d4}
and

{d5} x (d3 d4} x (d7 dg}
{dj d2} x {d7 d8 dg}

and

{d8} x {d3 d4}
and

{d5} x {d3 d4} x {d7 dg}

Table 3: Sequential problem-solving
with parsimonious covering using
irredundant covers.
----------------------------------------

The absence of m2 and m3 does not
change this initial hypothesis.
However, when m4 is discovered to be
present, MANIFS and SCOPE are augmented
appropriately. A new HYPOTHESIS is
developed by "dividing" the only pre-
existing generator set in HYPOTHESIS by
causes(m4), which in this case
corresponds to intersecting causes(m4)
with the only set of disorders in the
HYPOTHESIS. A new generator {dl d2) is
the result of this "division" or
intersection, while the other new
generator {d3 d4} x {Id d8} is
constructed as a "remainder from the
division process. In other words, the
second new generator is built from {dR
d4} which is the part of HYPOTHESIS noi
kept in the division/intersection, and
{d5 d8} which is the part of causes(m4)
not kept in the division/intersection.
Note that the two generators at this
point represent all irredundant covers
for the manifestations known to be
present so far. These covers have
either one or two disorders in them.

When m5 is noted to be present,
MANIFS and SCOPE are again adjusted
appropriately. Similar "division" and
"remainder" operations are used to
create a new HYPOTHESIS representing 12
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irredundant covers, each containing
either two or three disorders. Since m6
is found to be absent, the resulting
three generators represent exactly the
irredundant covers in the final solution
(compare them with the explicit + listing
of all irredundant covers for M = {mi,
m4, m5) given in the earlier example).

FURTHER ISSUES

The previous section has attempted
to present the flavor of parsimonious
covering theory in an informal fashion,
using a simplified model of the
associative knowledge involved.
Clearly, as outlined earlier, more
complex associative networks can be
involved (see Figure 2a), and many
additional issues need to be examined.
This section outlines some of these
issues, and is divided into three
parts. The first part addresses a
number of extensions relating to the
basic version of parsimonious covering
theory described above. The second part
examines another extension, integration
with probability theory, in some
detail. Finally, the third part
summarizes recent work to generalize the
theory in a number of ways so that it
addresses more complex diagnostic
problems. This material is intended
both to catalog many of the practical
issues involved in formally modelling
real-world diagnostic problem-solving,
and to outline progress on addressing
these issues.

Extensions to the Basic Formalism

Using even the basic form of
parsimonious covering theory described
above requires that a number of issues
be addressed and resolved. Two related
issues are how questions should be
generated during sequential problem-
solving to obtain additional
information, and when problem-solving
should terminate. These are open
research questions in AI today.
Diagnostic expert systems ha ed on
parsimonious covering theory and
related non-formal models , 1,29 have
generally used a heuristic approach to
question generation and termination.
Questions are generated in a hypothesis-
driven fashion based on which disorders
are currently under active consider-
ation. Recently, an entropy minimizing
metric has been pj; osed for abductive
reasoning models. All of these
methods for question-generation are
limited in their utility and accuracy as
a model of human problem-solving.

Another issue is how M+ should be
extracted from information describing a
problem. The formulation of
parsimonious covering theory in the
preceding section presumes that M+ is
readily available, but in some
situations obtaining M+ is non-trivial
and must be inferred from a large amount
of data. For examples, in the
description:

"The patient is a 31 year old diabetic
female with a complaint of headaches.
Her temperature is 1010F, BP is 115/75,
the pulse is 72/min, the neck is supple
and without bruits, and the neurological
examination is unremarkable except for
distal loss of proprioception in the
lower extremities.1*

it must somehow be appreciated that M+
consists of three manifestations
(headache, fever, proprioception loss).

In general, identifying M+ involves
examining the differences between normal
behavior and observed behavior. This
differencing process is quite simple in
some cases. For example, identifying
fever as an element in M+ in the above
description Just involves recognizing
that the given temperature is outside of
the normal range. In other situations,
extacting M+ from observed behavior is
much more involved and requires a
significant amount of inferencin
itself. The problem of extracting M
has been examined in some detail in such
non-medical applications as analysis
models of biological tree growth
classific tion of errors in sequential
processes and in dijg8sis of faults in
electronic systems. 1

Another practical aspect of
diagnostic problem-solving is the
possible availability of partial
solutions. For example, in the above
patient description the fact that the
patient is diabetic represents an
assertion that a disorder is present,
not a manifestation. Applying
parsimonious covering in the face of
such volunteered information requires
not only that diabetes be part of any
overall diagnostic hlpothesis, but that
those elements of M presumably caused
by diabetes (proprioception loss) should
be handled accordingly. Algorithms
which perform parsimonious covering in
the context of volunteered partial
solutions have been developed for fairly
general classes of diagnostic
problems.27

Finally, it should be appreciated
that human diagnositicians can Justify
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their diagnostic hypotheses, and that
automated Justification of problem
solutions is an important feature for
acceptability of diagnostic expert
systems. For this reason, basic methods
for automated Justification of
diagnostic hypotheses formulated
parsimonious covers have been studied,
but much work in this area remains to be
done.

Integration with Probability Theory

An alternative to determining the
plausibility of a diagnostic hypothesis
based on a subjective notion of
parsimony is to objectively calculate
its probability using formal probability
theory. The difficulty with this
approach in the past has been that
general diagnostic problems are mult -
membership classification problems":
multiple disorders can be present
simultaneously. A hypothesis DI = {d1,
4.9 . . 0., dn} represents the belief
that disorders d1 and d2 and . . . and
d are present, and that all di not
lysted in DI are absent. Such problems
are rec1pgpized to be very difficult to
handle. Among other things, letting
N = IDI be the total number of possible
disorders, the set of 2N diagnostic
hypotheses DI that must be ranked in
some fashion 1s incredibly large in most
real-world applications. In medicine
even constrained diagnostic prpOlems ip
have 50 < N < 100, and thus 2V to 2T"
hypotheses to consider. Furthermore,
there has not been any generally
annepted method to rank hypotheses DI
relative to one another in
multimembership problems.

Recently we have been successful in
integrating formal probability theory
into the framework of parsimonious
covering theory in a way that over5m
some of these past difficulties. '
This is achieved as follows. In the
knowledge base, a prior probability Pi
is associated with each disorder d1 in D
where 0 < Pi < 1. A causal strength 0 <
Cii < 1 is associated with each causal
association <di,mj> in C, representing
how frequently di causes m1. For any
<di,mj> not in C, cii is assumed to be
zero. A very important point here is
that c # P(m di). The probability
CthaJ fined Is c P(di causes
mTidi), represents Wow frequently di
causes m1 when d: is present; the
probability P(mf jdid, which is what has
been used in previous statistical
diagnostic models, represents how
frequently m1 occurs when di is
present. Sinde typically more than one
disorder is capable of causing a given

manifestation mj, P(mjldi) > ci. For
example, if d cannot cause m at all,
c - O, but 1P(mj Idi) > 0 because some
otYAer disorder present simultaneously
with di may cause m1. More concretely,
if di = "heart atta'ck" and m1 = "left
ankle pain" then cij = 0 becau e a heart
attack does not cause left ankle pain.
However, P(maldi) is greater than zero
because from time to time it is the case
that a patient with a heart attack also
has left ankle pain.

By introducing the notion of causal
strengths, and by assuming that
disorders are independent of each other,
that causal strengths are invariant
(whenever di is present, it causes m1
with the probability cii regardless or
other disorders that ari present), and
that no manifestation can occur without
being caused by some disorder, a careful
analysis derives a formula for P(DI M+),
the probability of any diagnostic
hTpothesis DI given the presence of any
M , Xryg formal probability
theory.2',-' Here DI denotes the event
that all disorders in DI are present and
all other disorders are absent, while M+
denotes the event that all
manifestations in M+ are present and all
others absent. In particular, it can be
shown that

P(DI|M+) = K(M+) * L(D1,M+)
where K(M+) is a constant for all DI
given any M+, and L(DI,M+), called the
relative likelihood of DI given M+,
consists of three components: a weight
relfecting how likely DI is to cause the
presence of manifestations in the given
M+; a weight based on manifestations
expected with DI but which are actually
absent; and a weight based on the prior
probabilities of disorders in DI. Each
of these weights involves only
probabilistic information related to di
£ DI and mj £ M+ instead of the entire
associative network. For this reason,
L(DI,M+) is computationally very
tractable.

These results make it possible to
compare the relative likelihood of any
two diagnostic hypotheses DI and Dj
using

P(DI| L(DIs*M+

P(Dj M+) L(DjsM+)
In addition to providing a method for
ranking a set of parsimonious covers
identified as the solution to a
diagnostic problem, there are some other
immediate benefits to be derived from
this result as follows.

By applying this form of Bayesian
classification extended to work in the
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framework of parsimonious covering
theory, we have been able to examine
various intuitive/subjective criteria
for hypothesis plausibility in an
objective fashion. Consistent with
intuition and concepts in parsimonious
covering theory, probability theory
leads to the conclusion that a set of
disorders must be a cover to be a
plausible hypothesis (i.e., non-covers
have zero probability). Further,
conditions can now be stated for when
various criteria of "simplicity" or
parsimony are reasonable heuristics for
Judging plausibility based on whether or
not they are guaranteed to i tntify the
most probable hypothesis. For
example, minimal cardinality is only
appropriate to consider when all
disorders are very uncommon and of about
equal probability, and causal strengths
are fairly large. If some disorders are
relatively much more common than others,
or if some causal strengths are weak,
using minimal cardinality as a heuristic
to select plausible diagnostic
hypotheses is inadequate. In this
latter situation, typical of most real-
world problems, the criterion of
irredundancy may be appropriate.

Irredundancy is generally quite
attractive as a plausibility criterion
for diagnostic hypotheses, and the set
of all irredundant covers of a set of
given manifestations M+ can be shown
usually to include the most likely
hypothesis. However, there are two
difficulties with directly generating
the set of all irredundant covers as
diagnostic hypotheses. First, this set
may itself be quite large in some
applications, and may contain many
hypotheses of very low probability.
Second, and more serious, it may still
miss identifying the most probab g
diagnostic hypothesis in some cases.
This latter difficulty is an insight
concerning plausibility criteria that
has not been previously recognized.

Fortunately, both difficulties are
surmountable. A heuristic function
based on L(DI,M+) can be used to guide a
heuristic search algorithm to first
locate a few most likely irredundant
covers for M+. Then, a typically small
amount of additional search of the
"neighborhood" of each of these
irredundant covers can be done to see if
any relevant but redundant covers are
more likely. An algorithm to do this
and a proof that it is guaranteed to
identify the most likely diagnostic
hypothesis2Pas been presented in detail
elsewhere.

There are a number of
generalizations that could be made to
these results concerning probability
theory, and we view these as important
directions for further research. Our
use of Bayesian classification with a
causal model assumed that disorders
occur independently of one another. In
some diagnostic problems this is
unrealistic, so a logical extension of
this work would be to generalize it to
such problems. Some related work has
already been done along these lines in
setting bounds on the relative
likelihood of isorders with Bayesian
classification. In addition, we have
developed only one method of ranking
hypotheses (Bayes' Theorem) to work in
causal domains involving multiple
simultaneous disorders. It may be that
with suitable analysis other approaches
to ranking hypotheses could also be
adopted in a similar on (e.g.,
Dempster-Shafer theory. ' ) Some
initial work along these lines w4 h
fuzzy measures has already been done.

Advanced Issues and Challenges

There are a number of other
generalizations or extensions that have
been or can be made to parsimonious
covering theory. Perhaps the most
obvious is that more general associative
networks such as that of Figure 2a,
rather than bipartite networks as in
Figure 2b, can be used. This involves
the use of associative or causal
chaining: A causes B, and B causes C,
so A indirectly causes C (the first two
causal associations are "chained
together" to form the third, reflecting
the fact that causation is a transitive
relationship). It has been possible to
develop provably-correct algorithms that
perform parsimonious co'rering in fairly
general 2ituations involving causal
chaining.

Other work in progress
investigating several related topics:

is

* incorporation of classification
taxonomies into parsimonious
covering theory;

* extension of the theory to work
with causal associations involving
quantified variables;

* covering M+ with interconnected
data structures rather than simple
sets;

* extension of the theory to work in
situations where spatial
(anatomical) relationships are
important;

* modification of parsimonious
covering theory so that it can be
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used for non-diagnostic abductive
tasks such as machine learnin2 and
natural language processing; and

* integration of the theory with
underlying causal mechanism models.

Many of these topics are currently being
examined by developing a large, real-
world diagnostic system (see below).

CONCLUSION

This paper has introduced and
summarized the ideas in parsimonious
covering theory. While we have
discussed parsimonious covering theory
in the context of medical diagnosis, it
should be clear that it is much more
general. For example, applications
using parsimonious covering or related
concepts have already been developed for
problem-solving in software
engineering, 404iducation,15 and
electronics,l2 ° J as well as a
variety of industrial applications.
Although a number of significant results
have been obtained in developing
parsimonious covering theory, much work
remains to be done to extend the
formalism and increase its generality.

A pressing need at present is to
test further the concepts in
parsimonious covering theory through
their application in real-world
systems. We are currently developing a
large knowledge-based diagnostic expert
system which uses parsimonious covering
theory. The system, called NEUREX for
Neurological Expertise, will be applied
to perform 3eurological localization and
diagnosis. The purpose of the NEUREX
system is to serve as a substantial
real-world application that will permit
the critical evaluation of concepts used
in parsimonious covering theory.
Parsimonious covering will not only be
used to perform the application-related
diagnostic problem-solving, but it will
also be used to support other tasks such
as natural language processing and
instructional use.
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